
APPENDIX A
DETAILS ON STATE SPACE FORMULATION

This section provides a detailed formulation of the system’s
state space, encompassing the key variables that govern the
robotic in-hand writing process:
• Robotic Joint (xwt ∈ R3, xfg ∈ R6): Mimicking human

writing, the wrist position xwt remains largely stationary,
adjusting mainly for height, with left-right translations
occurring only when transitioning between words. Most
movements are managed by the fingers, with their joints
normalized to [0, 1] as xfg, based on their respective lower
and upper limits.

• In-hand Contact (xint ∈ R3×3, fint ∈ R3): For each of
the three fingers, in-hand contact positions xi

int(i = 1, 2, 3)
are obtained by averaging the positions of tactile taxels
detecting pressure above a predefined threshold. The corre-
sponding in-hand contact forces fint are calculated by vector
summing forces from these active sensors. Both xint and fint
are first expressed in the local coordinate frame of each
finger link and subsequently transformed into the global
coordinate system.

• Writing Tool Pose (pobj ∈ R3): The writing tool’s pose
is represented by a unit vector pobj, with the orientation
around its major axis neglected. The initial object pose is
denoted as pprior.

• Target Trajectory (xtg ∈ R2, vtg ∈ R2): The system
follows a desired trajectory of target positions xtg on the
writing plane, with corresponding velocities vtg tracked to
ensure smooth motion.

• Extrinsic Contact (xext ∈ R3, fext ∈ R): Extrinsic contact
positions xext are estimated using in-hand positions xint and
the height of writing surface. While tangential friction is
treated as a disturbance, only the normal component of the
extrinsic contact force fext is considered.

These variables collectively define the system’s state space,
which is fundamental for modeling both in-hand and extrinsic
contact dynamics in the robotic writing process.

APPENDIX B
DETAILS ON REINFORCEMENT LEARNING POLICY

This section provides a comprehensive overview of the
reinforcement learning (RL) policy used for finger motion
control in the robotic in-hand writing system.

The finger motion control problem is modeled as a finite-
horizon discounted Markov decision process (MDP), where
a robotic hand, acting as an agent, interacts with a stochastic
environment by selecting sequential actions. A deep reinforce-
ment learning (RL) algorithm optimizes the control policy
to maximize task performance. The MDP consists of a state
space (S), representing all possible system states, and an action
space (A), representing all possible control actions. The state
transition function T : S × A → S defines the probability
distribution of state transitions given an action. The reward
function r : S × A → R assigns a scalar reward for each
state-action pair. At each time step t, the policy π observes
the current state st ∈ S, selects an action at = π(st) ∈ A,

and receives a reward r(st, at). The objective is to maximize
the expected cumulative discounted reward:

Eπ
[∑

t = 0T γtr(st, at)
]
, (B1)

where γ ∈ [0, 1) is the discount factor that balances immediate
and future rewards.

1) Training Details: The RL policy is trained using the
Proximal Policy Optimization (PPO) algorithm, chosen for
its stability and suitability for parallelized real-time tasks.
To accelerate data collection, we employ a vectorized setup
with 12 parallel environments. Each PPO update processes
a batch of 4200 transitions over 2 epochs, for a total of 8
million timesteps. The policy uses a multilayer perceptron
network (MLP) with two hidden layers (256 ReLU units each),
featuring separate output branches for the policy (π) and value
function (V ). Training is conducted on a desktop with an Intel
12th Gen i5-12600KF CPU and an NVIDIA GeForce RTX
3060 GPU.

2) Observation Space: The RL agent operates within a
carefully designed observation space that captures critical task-
related features, providing essential information for finger
motion control. The complete observation space includes the
object vector, extrinsic contact forces and positions, the target’s
relative position and velocity, normalized finger joint positions,
and in-hand contact forces and positions at the fingertips, as
outlined in TABLE B1.

TABLE B1
OBSERVATION SPACE

Type State Variable

Observable
Finger Joint Positions xfg ∈ R6

Target Position and Velocity xtg ∈ R2, vtg ∈ R2

In-hand Contact Force and Position xint ∈ R3×3, fint ∈ R3

Unobservable
Object Vector pobj ∈ R3

Extrinsic Contact Force and Position xext ∈ R3, fext ∈ R

3) Action Space: The action space corresponds to the
desired displacements of six finger joints. A Proportional-
Derivative (PD) control scheme computes target joint positions
by blending previous positions with the action input, scaled
by the maximum allowable joint velocity and simulation
timestep. To ensure stability, the target position is clipped
within joint limits, and the low-level PD controller is applied
with proportional and derivative gains to minimize position
tracking error.

4) Reward Design: The reward function consists of mul-
tiple components, each designed to guide the agent toward
stable and effective manipulation. These reward components
encourage precise task execution, smooth actions, and consis-
tent contact with the object and external surfaces. The reward
components are summarized in TABLE B2.

APPENDIX C
DETAILS ON SIM-TO-REAL TRANSFER

This section provides a comprehensive description of the
sim-to-real transfer processes, including tactile signal mod-



TABLE B2
REWARD COMPONENTS AND THEIR FORMULAS

Reward Formula

rpos − log10(∥xext,xy − xtg∥+3)
rheight − log10(∥xext,z − zplane∥+3)
rtime 0.5
rsmooth −0.01 · ∥at − at-1∥

rcon


0.001 ·

∑
fint, if all contact exists

−0.05, if any fingertip has no contact
−0.5, if all contact points are zero

rext 0.08 · (−∥fext − fth∥)

eling, finger joint optimization, and domain randomization
settings.

1) Tactile Signal Modeling and Calibration: Unlike prior
works that directly binarize tactile signals for simplicity,
our approach aims to extract continuous and precise tactile
information, including contact positions and normal forces. To
ensure consistency between simulated and real tactile sensing,
we implement improvements across three levels: simulation
modeling, signal processing, and sensor calibration.

In the real system, each fingertip is equipped with a curved
tactile sensor array composed of 128 piezoresistive taxels
embedded in a soft elastomer layer [36]. In simulation, each
fingertip tactile array is modeled in MuJoCo as an array
of distributed hemispheres mounted on rods, as shown in
Fig. 4 (c), which reproduce discrete normal force readings and
introduce spatial gaps that mimic the dead-zone behavior of
real tactile taxels. Each taxel is represented as a mass-spring-
damper system, with parameters calibrated to match real taxel
behavior. A fixed threshold is applied to the simulated sensor
values to determine contact activation. When multiple taxels
are activated, their local contact coordinates are transformed
into the world frame to compute the mean contact position,
while the total contact force is estimated by vector-summing
the normal force values from all active taxels. To emulate
real-world noise and imperfections, we adopt several signal
processing heuristics. Specifically, when contact signals mo-
mentarily vanish, the last valid position is held for around 20
frames to simulate latency and dropout tolerance. Simulated
force values are also quantized and scaled based on empirical
calibration.

To ensure quantitative alignment between real and simulated
forces, we calibrate each taxel’s voltage output vtac to the
corresponding applied force Ftac. The calibration platform
consists of a SCARA-type three-axis robotic arm and a three-
axis gimbal. At the end of the arm, an ATI mini45 force/torque
sensor and a cylindrical pressing structure are used to apply
controlled pressure to each taxel, as shown in Fig. C1 (a).
Normal forces ranging from 0 to 2.5 N are applied, with three
repeated measurements taken for each taxel. To establish force
mapping with a dead zone, we fit a nonlinear function to
each taxel’s response using the Levenberg-Marquardt (LM)
algorithm. The relationship between the piezoelectric output
vtax and corresponding normal force Ftac for the i-th taxel is
modeled as:

F ˜tac = a · bv ˜tax

1− bv ˜tax
+ c, (C1)

Fig. C1. Tactile sensor calibration: (a) setup for calibration, (b) calibration
results for taxel 71 without (top) and with (bottom) the dead zone.

where F ˜tac = Ftac/2.5 represents the normalized measured
force, v ˜tax = vtax/18000 is the sensor’s normalized output
value. Outliers caused by off-center presses or irregularities
are filtered to improve consistency. As shown in Fig. C1
(b), calibrating taxel 71 with a dead zone yields parameters
a = 0.1, b = 1.08, and c = 0.16, with an average error of
1.63%. Without the dead zone, the parameters are a = 0.37,
b = 0.82, and the error increases to 7.16%. The inclusion
of a dead zone largely improves accuracy, with most taxels
exhibiting an error below 5%, leading to more reliable contact
force measurements.

2) Joint Dynamics Optimization: To improve the align-
ment between the simulated and real-world joint responses,
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [38] is employed. The optimization minimizes discrep-
ancies in joint angles by adjusting the position control gain
K (sim)

p and joint damping K (sim)
d for the simulated system. The

optimization problem is formulated as:

min
K(sim)

p ,K(sim)
d

T∑
t=0

∥θsim,t−θreal,t∥2, s.t. K (sim)
p ,K (sim)

d > 0. (C2)

where θsim, θreal denote joint position sequences from sim-
ulation and real-world environments, respectively, with T
representing the sequence length. The objective is to minimize
the error between the joint angles in the simulation and the real
system. TABLE C1 presents the initial CMA-ES parameters,
while TABLE C2 lists the optimized joint parameters.

TABLE C1
CMA-ES INITIAL PARAMETERS

Initial Guess Step Size Iterations Tol Lower Bounds Upper Bounds

[25.0, 1.0] 0.5 30 0.05 [0.01, 0.0] [50.0, 5.0]

3) Domain Randomization Parameters: This section pro-
vides the detailed parameter ranges used during the domain
randomization process, which are sampled during training to
account for natural variations in object and environmental
properties. The parameters are listed in TABLE C3. For



TABLE C2
OPTIMIZED JOINT PARAMETERS

Joint Position control gain K(sim)
p Joint damping K(sim)

d

F0MPP 26.27 2.37
F0DIP 24.27 2.00
F1MPP 49.32 3.96
F1DIP 25.25 2.00
F2MPP 49.92 3.59
F2DIP 24.51 1.87

TABLE C3
PARAMETER RANGES FOR DOMAIN RANDOMIZATION

Parameter Range

Pen mass (kg) 0.012∼0.032
Pen diameter (m) 0.003∼0.006
Initial grasp positions (m) -0.006∼0.004 (longitudinal)

0.0∼0.015 (vertical)
Starting orientation [0, 0, -1]
Fingertip static friction coefficient 0.5∼1.0
Fingertip sliding friction coefficient 0.3∼0.7
Pen-tip friction coefficient 0.06∼0.3

example, the pen’s mass ranges from 0.012 kg to 0.032 kg,
and its diameter varies between 0.003 m and 0.006 m. Initial
grasping positions are randomized along both the longitudinal
and vertical axes to simulate real-world variations in grip. The
starting orientation is set to [0, 0,−1] to model the typical
orientation during interaction. Friction coefficients are also
randomized based on empirical data for various materials and
surfaces. These ranges are adjusted to ensure realistic simula-
tions that capture the wide range of interactions observed in
real-world scenarios.

APPENDIX D
ADDITIONAL DETAILS OF THE ABLATION STUDY

To highlight the importance of incorporating extrinsic con-
tact perception and arm-hand collaborative control, we conduct
real-world ablation studies on the circle-drawing task, compar-
ing our proposed framework against two policy variants. Each
policy is evaluated over five independent trials. The evaluation
metrics includes: a) external contact force at the pen tip, and b)
the quality of the resulting drawn trajectories. For consistency,
each policy is allotted a fixed horizon of 140 inference steps,
and the compliant controller (when present) is configured to
maintain an external contact force of 0.5N at the pen tip.
• Raw SP: This variant directly fine-tunes the “stir policy”

from [22], originally trained for mid-air object manipulation
using fingertip tactile and joint inputs, to the circle-drawing
task. It uses reinforcement learning with the wrist remaining
stationary, without explicit extrinsic contact estimation. Due
to the lack of wrist actuation and external feedback, the
pen frequently lost contact with the paper after minor
disturbances from surface reactions, causing all trials to fail.

• Compliant SP: This variant extends Raw SP by intro-
ducing a compliant wrist controller to passively maintain
pen–surface contact. However, it still lacks explicit percep-
tion of extrinsic contact events. Although it sustains contact
slightly longer than Raw SP, it remains unable to adapt

to unmodeled perturbations or contact loss, resulting in
frequent deviations and degraded trajectory quality.

• Proposed Framework (ours): Our method integrates an
optimization-based contact-status estimator with arm-hand
collaborative control. This allows the system to actively
modulate both finger and wrist motions based on real-time
contact feedback, maintaining stable pen–surface contact
and accurately tracking the desired trajectory.

Fig. D1. Representative writing trajectories under each policy variant,
illustrating the performance gap.

Fig. D1 presents representative trajectories for each pol-
icy, clearly demonstrating that only the proposed method
consistently maintains contact and produces reliable writing
results. These results confirm that combining explicit extrinsic
contact estimation with closed-loop wrist control is critical
for achieving robust and accurate performance in real-world
writing tasks.
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